
CS106B
Winter 2019

Handout 19
February 19, 2019

Section Handout 6

Based on handouts by Jerry Cain, Julie Zelenski, and Eric Roberts

Problem One: Linked List Mechanics
This section handout is almost exclusively about linked lists, so before we jump into some of their appli-
cations, let’s start off by reviewing some of the basic mechanics about how they work!

To begin with, let’s imagine we have a linked list of integers. Go and define a Cell struct representing
a single cell in the linked list. Then, write a function

int sumOfElementsIn(Cell* list);

that adds up the values of all the elements in the linked list. Write this function two ways – first, do it it -
eratively; then, do it recursively. Which one did you think was easier to write? Why?

Next, write a function

Cell* lastElementOf(Cell* list);

that returns a pointer to the last element of a linked list (and reports an error if the list is empty). Again,
write this function two ways, iteratively and recursively. Which one did you think was easier to write?

Problem Two: Cleaning Up Linked Lists
In lecture, we saw the following code for deallocating all the memory used by a linked list:

void freeListRec(Cell* cell) {
 if (cell == nullptr) return;
 freeListRec(cell->next);
 delete cell;
}

What would happen if we rewrote the function this way instead?

void freeListRec(Cell* cell) {
 if (cell == nullptr) return;
 delete cell;
 freeListRec(cell->next);
}

Using your understanding of the difference between these two pieces of code, write a recursive function
to print a linked list in reverse.

Problem Three: Tail Pointers
In lecture, we wrote a function to read a list of values from the user and return a linked list containing
those values (and we wrote it two different ways, too!) That function had the odd property that it re-
turned the elements that were read in reverse order, which was a consequence of the fact that we kept
adding elements at the front of the list that we’d made.

Write an iterative function

Cell* readList();

that reads a list of values from the user. It should return a linked list containing those values in the order
in which they were entered. To make it run in time O(n), where n is the number of elements read, main-
tain a tail pointer keep track of the very last element in the list.

1 / 5

Problem Four: Pointers by Reference
One of the trickier nuances of linked lists comes up when we start passing around pointers as parameters
by reference. To better understand exactly what that’s all about, trace through the following code and
show what it prints out. Also, identify any memory leaks that occur in the program.

void confuse(Cell* list) {
 list->value = 137;
}

void befuddle(Cell* list) {
 list = new Cell;
 list->value = 42;
 list->next = nullptr;
}

void confound(Cell* list) {
 list->next = new Cell;
 list->next->value = 2718;
 list->next->next = nullptr;
}

void bamboozle(Cell*& list) {
 list->value = 42;
}

void mystify(Cell*& list) {
 list = new Cell;
 list->value = 161;
 list->next = nullptr;
}

int main() {
 Cell* list = /* some logic to make the list 1 3 5 null */→ 3 → 5 → null */ → 3 → 5 → null */ → 3 → 5 → null */

 confuse(list);
 printList(list); // from lecture

 befuddle(list);
 printList(list);

 confound(list);
 printList(list);

 bamboozle(list);
 printList(list);

 mystify(list);
 printList(list);

 freeList(list); // from lecture
 return 0;
}

2 / 5

Problem Five: Concatenating Linked Lists
Write a function

Cell* concat(Cell* one, Cell* two);

that takes as input two linked lists, then concatenates the second list onto the back of the first linked list.
Your function should return a pointer to the first element in the resulting list.

Then, update the function so that it has this signature:

void concat(Cell*& one, Cell* two);

This function should proceed as before, except that instead of returning the new head of the linked list,
it changes the pointer given as a first parameter so that it holds the new head of the combined list. Then,
answer this question: why didn’t we make two a reference parameter as well?

Problem Six: The Classic Interview Question
Here’s a classic interview question that’s so overused that it’s almost an in-joke among software engi-
neers: write a function that reverses a linked list. Do it both iteratively and recursively, and aim to get
your code to run in time O(n).

Problem Seven: Doubly-Linked Lists
The linked lists we talked about in lecture are called singly-linked lists because each cell just stores a
single link pointer, namely, one to the next element in the list. A common variant on linked lists is the
doubly-linked list, where each cell stores two pointers – a pointer to the next element in the list (as be-
fore) and a pointer to the previous element in the list.

Let’s begin by modifying some of the existing code from lecture to account for this case. Assuming you
have a Cell type representing a cell in a doubly-linked list, write a function

Cell* readList();

that reads a list of values from the user, then returns a new doubly-linked list containing those values in
the order they were entered.

Doubly-linked lists have one really nice property: it is really easy to splice a new element into or out of a
doubly-linked list. Write a function

void insertBefore(Cell*& head, Cell* beforeMe, Cell* newCell);

that takes as input a pointer to the first element in a doubly-linked list, a pointer to a cell somewhere in
the linked list (beforeMe), and a newly-allocated Cell object, then splices the new cell into the doubly-
linked list right before the cell beforeMe. Your function should update head so that when the function
returns, it still points at the first cell in the linked list. (Why is it necessary to pass in the head of the
list?) You can assume that beforeMe is not null.

3 / 5

Problem Eight: Dummy Nodes
When working with linked lists, it’s common to encounter some weird edge cases when growing a zero-
element list into a one-element list or shrinking a one-element list to a zero-element list, since in those
cases you typically need to modify some external head and tail pointers. One technique that simplifies
the logic in these cases is to add dummy nodes to the linked list. A dummy node is a node that’s techni-
cally a part of a linked list, but is specifically intended to signify “the start of the list” or “the end of the
list.”

For example, let’s imagine we have a doubly-linked list. We might insert dummy nodes before the first
element of the list and after the last element of the list, as shown here:

First, write a function

Cell* makeEmptyList();

that creates a new doubly-linked list with a dummy head and tail, then returns a pointer to the head.

Now, write a function

void printList(Cell* head, Cell* tail);

that prints out the contents of a doubly-linked list whose dummy first and last elements are pointed at by
the head and tail parameters. Next, write a pair of functions

void insertBefore(Cell* newCell, Cell* beforeMe);
void insertAfter(Cell* newCell, Cell* afterMe);

that take as inputs a newly-allocated cell to insert into the list and a cell that comes right after or right
before the cell to insert, then splices the new cell into the list. You can assume that no one will try to in-
sert anything before the head or after the tail, though they could do something like insert before the tail
or after the head to append or prepend a new cell to the list.

Next, write a pair of functions

void append(Cell* tail, Cell* newCell);
void prepend(Cell* head, Cell* newCell);

that insert the specified element at the beginning or end of the linked list. Then, write a function

void remove(Cell* toRemove);

that removes an element from a doubly-linked list with a dummy head and tail and deallocates the cell.
Finally, write a function

void freeList(Cell* head);

that frees the list whose first element is head.

How did that compare with the regular doubly-linked list from before?

4 / 5

Problem Nine: Double-Ended Queues
This problem concerns a data structure called a double-ended queue, or deque for short (it’s pronounced
“deck,” as in a deck of cards). A deque is similar to a stack or queue in that it represents a sequence of
elements, except that elements can be added or removed from both ends of the deque. Here is one possi-
ble interface for a Deque class:

class Deque {
public:
 Deque();
 ~Deque();

 /* Seems like all containers have the next two functions. :-) */
 bool isEmpty() const;
 int size() const;

 /* Adds a value to the front or the back of the deque. */
 void pushFront(int value);
 void pushBack(int value);

 /* Looks at, but does not remove, the first/last element of the deque. */
 int peekFront() const;
 int peekBack() const;

 /* Returns and removes the first or last element of the deque. */
 int popFront();
 int popBack();
};

One efficient way of implementing a deque is as a doubly-linked list. The deque stores pointers to the
head and the tail of the list to support fast access to both ends. Design the private section of the Deque
class, then implement the above member functions using a doubly-linked list. As a hint, this is way eas-
ier to do using dummy nodes!

Problem Ten: Quicksort
The quicksort algorithm is a sorting algorithm that, in practice, tends to be one of the fastest sorts avail -
able. It’s a recursive algorithm that works as follows. If the list of values has at most one element in it,
it’s already sorted and there’s nothing to do. Otherwise:

• Choose a pivot element, typically the first element of the list.

• Split the elements in the list into three groups – elements less than the pivot, elements equal to
the pivot, and elements greater than the pivot.

• Recursively sort the first and last of these groups.

• Concatenate the three lists together.

Write a function

void quicksort(Cell*& list);

That accepts as input a pointer to the first cell in a singly-linked list of integers, then uses quicksort to
sort the linked list into ascending order. The function should change the pointer it receives as an argu-
ment so that it points to the first cell of the new linked list. This is a fairly large piece of code, so make
sure that you pick a good decomposition. With the right decomp, this code is quite easy to read.

5 / 5

	Problem One: Linked List Mechanics
	Problem Two: Cleaning Up Linked Lists
	Problem Three: Tail Pointers
	Problem Four: Pointers by Reference
	Problem Five: Concatenating Linked Lists
	Problem Six: The Classic Interview Question
	Problem Seven: Doubly-Linked Lists
	Problem Eight: Dummy Nodes
	Problem Nine: Double-Ended Queues
	Problem Ten: Quicksort

